Aerodynamic probe calibration using Gaussian process regression
نویسندگان
چکیده
منابع مشابه
Gaussian Process Regression for Multivariate Spectroscopic Calibration
Traditionally multivariate calibration models have been developed using regression based techniques including principal component regression and partial least squares and their non-linear counterparts. This paper proposes the application of Gaussian process regression as an alternative method for the development of a calibration model. By formulating the regression problem in a probabilistic fr...
متن کاملGaussian Process Quantile Regression using Expectation Propagation
Direct quantile regression involves estimating a given quantile of a response variable as a function of input variables. We present a new framework for direct quantile regression where a Gaussian process model is learned, minimising the expected tilted loss function. The integration required in learning is not analytically tractable so to speed up the learning we employ the Expectation Propagat...
متن کاملFast Gaussian Process Regression using KD-Trees
The computation required for Gaussian process regression with n training examples is about O(n) during training and O(n) for each prediction. This makes Gaussian process regression too slow for large datasets. In this paper, we present a fast approximation method, based on kd-trees, that significantly reduces both the prediction and the training times of Gaussian process regression.
متن کاملMonthly streamflow forecasting using Gaussian Process Regression
Bureau of Economic Geology, Jackson School of Geosciences, University of Texas Austin, Austin, TX 78713, United States Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical, Agriculture, Chinese Academy of Sciences, Changsha, Ch...
متن کاملHierarchical Gaussian Process Regression
We address an approximation method for Gaussian process (GP) regression, where we approximate covariance by a block matrix such that diagonal blocks are calculated exactly while off-diagonal blocks are approximated. Partitioning input data points, we present a two-layer hierarchical model for GP regression, where prototypes of clusters in the upper layer are involved for coarse modeling by a GP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Measurement Science and Technology
سال: 2020
ISSN: 0957-0233,1361-6501
DOI: 10.1088/1361-6501/aba37d